Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na(+) channel regulation.

نویسندگان

  • E Kamynina
  • C Tauxe
  • O Staub
چکیده

The epithelial Na(+) channel (ENaC) is regulated via PY motif-WW domain interaction by the mouse (m) ubiquitin-protein ligase mNedd4-2 but not by its close relative mNedd4-1. Whereas mNedd4-1 is composed of one C2, three WW, and one HECT domain, mNedd4-2 comprises four WW domains and one HECT domain. Both proteins have human (h) homologs, hNedd4-1 and hNedd4-2; however, both of them include four WW domains. Therefore, we characterized hNedd4-1 and hNedd4-2 in Xenopus laevis oocytes with respect to ENaC binding and interaction. We found that hNedd4-2 binds to and abrogates ENaC activity, whereas hNedd4-1 does not coimmunoprecipitate with ENaC and has only modest effects on ENaC activity. Structure-function studies revealed that the C2 domain of hNedd4-1 prevents this protein from downregulating ENaC and that WW domains 3 and 4, involved in interaction with ENaC, do not by themselves provide specificity for ENaC recognition. Taken together, our data demonstrate that hNedd4-2 inhibits ENaC, implying that this protein is a modulator of salt homeostasis, whereas hNedd4-1 is not primarily involved in ENaC regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2.

Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na(+) channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-...

متن کامل

Interaction of Serum- and Glucocorticoid Regulated Kinase 1 (SGK1) with the WW-Domains of Nedd4-2 Is Required for Epithelial Sodium Channel Regulation

BACKGROUND The epithelial sodium channel (ENaC) is an integral component of the pathway for Na(+) absorption in epithelial cells. The ubiquitin ligases Nedd4 and Nedd4-2 bind to ENaC and decrease its activity. Conversely, Serum- and Glucocorticoid regulated Kinase-1 (SGK1), a downstream mediator of aldosterone, increases ENaC activity. This effect is at least partly mediated by direct interacti...

متن کامل

Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits.

The epithelial Na(+) channel (ENaC) regulates Na(+) absorption in epithelial tissues including the lung, colon and sweat gland, and in the distal nephrons of the kidney. When Na(+)-channel function is disrupted, salt and water homoeostasis is affected. The cytoplasmic regions of the Na(+)-channel subunits provide binding sites for other proteins to interact with and potentially regulate Na(+)-c...

متن کامل

A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel.

Liddle's syndrome is a form of inherited hypertension linked to mutations in the genes encoding the epithelial Na+ channel (ENaC). These mutations alter or delete PY motifs involved in protein-protein interactions with a ubiquitin-protein ligase, Nedd4. Here we show that Na+ transporting cells, derived from mouse cortical collecting duct, express two Nedd4 proteins with different structural org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 281 3  شماره 

صفحات  -

تاریخ انتشار 2001